High-Resolution Chest X-Ray Bone Suppression Using Unpaired CT Structural Priors

There is clinical evidence that suppressing the bone structures in Chest X-rays (CXRs) improves diagnostic value, either for radiologists or computer-aided diagnosis. However, bone-free CXRs are not always accessible. We hereby propose a coarse-to-fine CXR bone suppression approach by using structural priors derived from unpaired computed tomography (CT) images. In the low-resolution stage, we use the digitally reconstructed radiograph (DRR) image that is computed from CT as a bridge to connect CT and CXR. We then perform CXR bone decomposition by leveraging the DRR bone decomposition model learned from unpaired CTs and domain adaptation between CXR and DRR. To further mitigate the domain differences between CXRs and DRRs and speed up the learning convergence, we perform all the aboved operations in Laplacian of Gaussian (LoG) domain. After obtaining the bone decomposition result in DRR, we upsample it to a high resolution, based on which the bone region in the original high-resolution CXR is cropped and processed to produce a high-resolution bone decomposition result. Finally, such a produced bone image is subtracted from the original high-resolution CXR to obtain the bone suppression result. We conduct experiments and clinical evaluations based on two benchmarking CXR databases to show that (i) the proposed method outperforms the state-of-the-art unsupervised CXR bone suppression approaches; (ii) the CXRs with bone suppression are instrumental to radiologists for reducing t...
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research