RhoA/Rock2/Limk1/cofilin1 pathway is involved in attenuation of neuronal dendritic spine loss by paeonol in the frontal cortex of D-galactose and aluminum ‑induced Alzheimer's disease‑like rat model.

RhoA/Rock2/Limk1/cofilin1 pathway is involved in attenuation of neuronal dendritic spine loss by paeonol in the frontal cortex of D-galactose and aluminum‑induced Alzheimer's disease‑like rat model. Acta Neurobiol Exp (Wars). 2020;80(3):225-244 Authors: Han F, Xu H, Shen JX, Pan C, Yu ZH, Chen JJ, Zhu XL, Cai YF, Lu YP Abstract Alzheimer's disease (AD) has become the most prevalent neurodegenerative disorder. Given the pathogenesis of AD is unclear, there is currently no drug approved to halt or delay the progression of AD. Therefore, it is pressing to explore new targets and drugs for AD. In China, polyphenolic Chinese herbal medicine has been used for thousands of years in clinical application, and no toxic effects have been reported. In the present study, using D‑galactose and aluminum‑induced rat model, the effects of paeonol on AD were validated via the Morris water maze test, open field test, and elevated plus maze test. Neuronal morphology in frontal cortex was assessed using ImageJ's Sholl plugin and RESCONSTRUCT software. RhoA/Rock2/Limk1/cofilin1 signaling pathway‑related molecules were determined by Western blotting. Cofilin1 and p‑cofilin1 were analyzed by immunofluorescence. Results showed that pre‑treatment with paeonol attenuated D‑galactose and aluminum‑induced behavioral dysfunction and AD‑like pathological alterations in the frontal cortex. Accompanied by these changes were the alterations in the...
Source: Acta Neurobiologiae Experimentalis - Category: Neurology Authors: Tags: Acta Neurobiol Exp (Wars) Source Type: research