Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation

Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods use...
Source: Frontiers in Physiology - Category: Physiology Source Type: research

Related Links:

In this study, researchers studied 438,952 participants in the UK Biobank, who had a total of 24,980 major coronary events - defined as the first occurrence of non-fatal heart attack, ischaemic stroke, or death due to coronary heart disease. They used an approach called Mendelian randomisation, which uses naturally occurring genetic differences to randomly divide the participants into groups, mimicking the effects of running a clinical trial. People with genes associated with lower blood pressure, lower LDL cholesterol, and a combination of both were put into different groups, and compared against those without thes...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study defines a new clinically relevant concept of T-cell senescence-mediated inflammatory responses in the pathophysiology of abnormal glucose homeostasis. We also found that T-cell senescence is associated with systemic inflammation and alters hepatic glucose homeostasis. The rational modulation of T-cell senescence would be a promising avenue for the treatment or prevention of diabetes. Intron Retention via Alternative Splicing as a Signature of Aging https://www.fightaging.org/archives/2019/03/intron-retention-via-alternative-splicing-as-a-signature-of-aging/ In recent years researchers have inv...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Publication date: June 2018 Source:Biomedicine & Pharmacotherapy, Volume 102 Author(s): Muhammad Naveed, Lei Han, Ghulam Jilany Khan, Sufia Yasmeen, Reyaj Mikrani, Muhammad Abbas, Li Cunyu, Zhou Xiaohui Congestive heart failure (CHF) is a complicated pathophysiological syndrome, leading cause of hospitalization as well as mortalities in developed countries wherein an irregular function of the heart leads to the insufficient blood supply to the body organs. It is an accumulative slackening of various complications including myocardial infarction (MI), coronary heart disease (CAD), hypertension, valvular heart disease (...
Source: Biomedicine and Pharmacotherapy - Category: Drugs & Pharmacology Source Type: research
Cardio-supportive devices (VRD &DCC device) and patches for advanced heart failure: A review, summary of state of the art and future directions. Biomed Pharmacother. 2018 Mar 14;102:41-54 Authors: Naveed M, Han L, Khan GJ, Yasmeen S, Mikrani R, Abbas M, Cunyu L, Xiaohui Z Abstract Congestive heart failure (CHF) is a complicated pathophysiological syndrome, leading cause of hospitalization as well as mortalities in developed countries wherein an irregular function of the heart leads to the insufficient blood supply to the body organs. It is an accumulative slackening of various complications includ...
Source: Biomedicine and pharmacotherapy = Biomedecine and pharmacotherapie - Category: Drugs & Pharmacology Authors: Tags: Biomed Pharmacother Source Type: research
Conclusions: Alterations to RV structure may represent a mechanism by which long-term PM10–2.5 exposure increases risks for adverse respiratory and cardiovascular outcomes, especially among certain susceptible populations. https://doi.org/10.1289/EHP658 Received: 14 June 2016 Revised: 24 February 2017 Accepted: 16 March 2017 Published: 27 July 2017 Address correspondence to S. D. Adar, University of Michigan School of Public Health, 1415 Washington Heights, SPH II-5539, Ann Arbor, MI 48109 USA. Telephone: (734) 615-9207; Email: sadar@umich.edu Supplemental Material is available online (https://doi.org/10.1289/E...
Source: EHP Research - Category: Environmental Health Authors: Tags: Research Source Type: research
In conclusion, the analyses do not permit us to predict the trajectory that maximum lifespans will follow in the future, and hence provide no support for their central claim that the maximum lifespan of humans is "fixed and subject to natural constraints". This is largely a product of the limited data available for analysis, owing to the challenges inherent in collecting and verifying the lifespans of extremely long-lived individuals. A reply from Jan Vijg's research group The authors of the accompanying comment disagree with our finding of a limit to human lifespan. Although we thank them for a...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we focused on two pathways of cardiomyocytes or heart cells: the Hippo pathway, which is involved in stopping renewal of adult cardiomyocytes, and the dystrophin glycoprotein complex (DGC) pathway, essential for cardiomyocyte normal functions." Previous work had hinted that components of the DGC pathway may somehow interact with members of the Hippo pathway. The researchers genetically engineered mice to lack genes involved in one or both pathways, and then determined the ability of the heart to repair an injury. These studies showed for the first time that dystroglycan 1, a component of the DGC ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study provides additional fuel to really bolster research efforts by us and others in geroscience, a field that seeks to understand relationships between the biology of aging and age-related diseases. Aging is the most important risk factor for common chronic conditions such as heart disease, Alzheimer's and cancer, which are likely to share pathways with aging and therefore interventions designed to slow biological aging processes may also delay the onset of disease and disability, thus expanding years of healthy and independent lives for our seniors." Longer-Lived Parents and Cardiovascular Outcomes ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Cardiology | Cardiovascular | Coronary Heart Disease | Heart | Heart Attack | Heart Disease | Heart Failure | Heart Transplant | Physiology | Study | Transplants