circKMT2D contributes to H2O2-attenuated osteosarcoma progression via the miR-210/autophagy pathway.

circKMT2D contributes to H2O2-attenuated osteosarcoma progression via the miR-210/autophagy pathway. Exp Ther Med. 2020 Nov;20(5):65 Authors: Zhang J, Chou X, Zhuang M, Zhu C, Hu Y, Cheng D, Liu Z Abstract Circular RNAs (circRNAs) have been demonstrated to be involved in osteosarcoma (OS) development; however, the underlying mechanism of circKMT2D in OS progression remains unclear. The present study aimed to elucidate how circKMT2D could affect hydrogen peroxide (H2O2)-induced OS progression. H2O2 (100 µmol/l) was used to treat MG63 and U2OS cells. The cell viability, invasive ability, apoptosis and circKMT2D expression were detected using Cell Counting Kit-8 assay, Transwell assay, flow cytometry and reverse transcription-quantitative PCR, respectively. Furthermore, MG63 and U2OS cells transfected with circKMT2D short hairpin RNA and negative control were treated with H2O2, and circKMT2D expression and cell phenotype were determined. Dual-luciferase reporter assay was conducted to determine the association between circKMT2D and miR-210 expression level. Rescue experiments were conducted to examine the mechanisms through which circKMT2D and miR-210 could affect H2O2-treated MG63 cells. In addition, the effects of miR-210 on the expression of the autophagy-related proteins Beclin1 and p62 in H2O2-treated MG63 cells were detected by western blotting. An autophagy inhibitor was used to treat the MG63 cells, and whether miR-210 could af...
Source: Experimental and Therapeutic Medicine - Category: General Medicine Tags: Exp Ther Med Source Type: research