Study on the mechanism of high-frequency stimulation inhibiting low-Mg2+-induced epileptiform discharges in juvenile rat hippocampal slices.

Study on the mechanism of high-frequency stimulation inhibiting low-Mg2+-induced epileptiform discharges in juvenile rat hippocampal slices. Brain Res Bull. 2020 Sep 19;: Authors: Zheng Y, Zhang K, Dong L, Tian C Abstract Study on the mechanism of high-frequency stimulation inhibiting low-Mg2+-induced epileptiform discharges in juvenile rat hippocampal slices High-frequency stimulation (HFS) has been demonstrated to be an effective treatment for inhibiting epilepsy in some clinical and laboratory studies. However, the mechanisms underlying the therapeutic effects of HFS are not yet fully understood. In our present study, epileptiform discharges (EDs) in acutely isolated hippocampal slices of male Sprague-Dawley (SD) juvenile rats induced by low-Mg2+ artificial cerebrospinal fluid (ACSF), and electrical stimulation (square wave, 900 pulses, 50 % duty-cycle, 130 Hz) was performed on the CA3 using concentric bipolar electrodes. EDs of neurons in hippocampal were recorded by multi-electrode arrays (MEA). After stable EDs events had been recorded for at least 20 min, HFS was added, followed by 10 μmol/L gamma-aminobutyric acid type A (GABAA) receptors blocker bicuculline (BIC). The results show that the HFS can increase the discharges frequency of inter-ictal discharges (IIDs) and decrease the duration of ictal discharges (IDs). However, the HFS had no effect on the slices with 10 μmol/L BIC. These results indicated that the GAB...
Source: Brain Research Bulletin - Category: Neurology Authors: Tags: Brain Res Bull Source Type: research