Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist.

Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist. Chemosphere. 2020 Nov;259:127430 Authors: Chen Q, Wang L, Qi Y, Ma C Abstract The frequent outbreaks of cyanobacterial blooms which caused serious societal and economic loss have become a worldwide problem. Interactions between toxic cyanobacteria and heterotrophic bacteria competitors play a pivotal role in the formation of toxic cyanobacterial bloom, but the underlying mechanisms of interactions between them await further research. The antagonist activity of Pseudomonas grimontii (P.grimontii) was confirmed by reduction in chlorophyll a concentration of Microcystis aeruginosa (M. aeruginosa) in an infected culture for a 7d period. The initial concentration of P.grimontii affected the M. aeruginosa activity significantly. When the 10% (V/V) concentration of P.grimontii A01 and P.grimontii A14 cultures were infected, the reduction of M. aeruginosa reached to 91.81% and 78.25% after 7 days, respectively. While a 0.1% (v/v) concentration of P.grimontii A01 and P.grimontii A14 cultures were infected, the M. aeruginosa increased 31.13% and 16.67% occurred, respectively. The content of reactive oxygen species (ROS) and malondialdehyde (MDA) increased with increasing of P.grimontii fermentation liquid, indicating the M. aeruginosa underwent oxidative stress. Using matrix-assisted laser de...
Source: Chemosphere - Category: Chemistry Authors: Tags: Chemosphere Source Type: research