Applying gene editing to tailor precise genetic modifications in plants [Plant Biology]

The ability to tailor alterations in genomes, including plant genomes, in a site-specific manner has been greatly advanced through approaches that reduced the complexity and time of genome sequencing along with development of gene editing technologies. These technologies provide a valuable foundation for studies of gene function, metabolic engineering, and trait modification for crop improvement. Development of genome editing methodologies began ∼20 years ago, first with meganucleases and followed by zinc finger nucleases, transcriptional activator-like effector nucleases and, most recently, clustered regulatory interspaced short palindromic repeat (CRISPR)-associated protein (Cas) (CRISPR/Cas), which is by far the most utilized method. The premise of CRISPR/Cas centers on the cleaving of one or both DNA strands by a Cas protein, an endonuclease, followed by mending of the DNA by repair mechanisms inherent in cells. Its user-friendly construct design, greater flexibility in targeting genomic regions, and cost-effective attributes have resulted in it being widely adopted and revolutionizing precise modification of the genomes of many organisms. Indeed, the CRISPR/Cas system has been utilized for gene editing in many plant species, including important food crops, such as maize, wheat, rice, and potatoes. This review summarizes the various approaches, including the most recent designs being used to make modifications from as small as a single-base-pair change to insertion of D...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: JBC Reviews Source Type: research