A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection.

In this study, a hydrophobic SERS substrate capable of concentrating nanoparticles and analytes was prepared by spin-coating lubricating liquid onto commercial paper. The condensation effect of the paper-based hydrophobic substrate induced aggregation of gold nanoparticles (Au NPs) to generate ''hot spots'' for SERS and to drive analytes to the hot-spot areas for more sensitive detection. The obtained SERS signal intensity was 5-fold higher than that obtained using common paper, and a detection limit (LOD) of 4.3 × 10-10 M for rhodamine 6G (R6G) was achieved. Randomly selected points on the substrate and different batches of substrates all exhibited high reproducibility, and the relative standard deviation (RSD) at 1362 cm-1 is approximately 11%. A further application of the hydrophobic substrate was demonstrated by the detection of cytochrome C within a linear detection range of 3.90 × 10-8 M-1.25 × 10-6 M. In addition, the prepared substrate can obtain identifiable SERS spectra of cancer cells and non-cancer cells because a large number of AuNP or Au NPs clusters can adhere to cells, resulting in the construction of a 3D hotspot matrix. The disposable hydrophobic paper substrate eliminates the problem of solution diffusion, and also provides an effective platform for biomolecular screening detection. PMID: 32928387 [PubMed - in process]
Source: Talanta - Category: Chemistry Authors: Tags: Talanta Source Type: research