Molecular interaction between methicillin-resistant Staphylococcus aureus (MRSA) and chicken breast reveals enhancement of pathogenesis and toxicity for food-borne outbreak.

Molecular interaction between methicillin-resistant Staphylococcus aureus (MRSA) and chicken breast reveals enhancement of pathogenesis and toxicity for food-borne outbreak. Food Microbiol. 2021 Feb;93:103602 Authors: Chung HY, Kim YT, Kwon JG, Im HH, Ko D, Lee JH, Choi SH Abstract To study pathogenesis and toxicity of Staphylococcus aureus in foods, FORC_062 was isolated from a human blood sample and complete genome sequence has a type II SCCmec gene cluster and a type II toxin-antitoxin system, indicating an MRSA strain. Its mobile gene elements has many pathogenic genes involved in host infection, biofilm formation, and various enterotoxin and hemolysin genes. Clinical MRSA is often found in animal foods and ingestion of MRSA-contaminated foods causes human infection. Therefore, it is very important to understand the role of contaminated foods. To elucidate the interaction between clinical MRSA FORC_062 and raw chicken breast, transcriptome analysis was conducted, showing that gene expressions of amino acid biosynthesis and metabolism were specifically down-regulated, suggesting that the strain may import and utilize amino acids from the chicken breast, but not able to synthesize them. However, toxin gene expressions were up-regulated, suggesting that human infection of S. aureus via contaminated food may be more fatal. In addition, the contaminated foods enhance multiple-antibiotic resistance activities and virulence factors in t...
Source: Food Microbiology - Category: Food Science Authors: Tags: Food Microbiol Source Type: research