Pituitary Adenylate Cyclase-Activating Polypeptide Attenuates Brain Edema by Protecting Blood –Brain Barrier and Glymphatic System After Subarachnoid Hemorrhage in Rats

AbstractBrain edema is a vital contributor to early brain injury after subarachnoid hemorrhage (SAH), which is responsible for prolonged hospitalization and poor outcomes. Pharmacological therapeutic targets on edema formation have been the focus of research for decades. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to participate in neural development and brain injury. Here, we used PACAP knockout CRISPR to demonstrate that endogenous PACAP plays an endogenous neuroprotective role against brain edema formation after SAH in rats. The exogenous PACAP treatment provided both short- and long-term neurological benefits by preserving the function of the blood –brain barrier and glymphatic system after SAH. Pretreatment of inhibitors of PACAP receptors showed that the PACAP-involved anti-edema effect and neuroprotection after SAH was facilitated by the selective PACAP receptor (PAC1). Further administration of adenylyl cyclase (AC) inhibitor and sulfony lurea receptor 1 (SUR1) CRISPR activator suggested that the AC–cyclic adenosine monophosphate (cAMP)–protein kinase A (PKA) axis participated in PACAP signaling after SAH, which inhibited the expression of edema-related proteins, SUR1 and aquaporin-4 (AQP4), through SUR1 phosphorylation. Thus, P ACAP may serve as a potential clinical treatment to alleviate brain edema in patients with SAH.
Source: Neurotherapeutics - Category: Neurology Source Type: research