Metabolism and disposition in rats, dogs, and humans of erdafitinib, an orally administered potent pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor.

This article describes in vivo biotransformation and disposition of erdafitinib following single oral dose of 3H-erdafitinib and 14C-erdafitinib to intact and bile duct-cannulated (BC) rats (4 mg/kg), 3H-erdafitinib to intact dogs (0.25 mg/kg), and 14C-erdafitinib to humans (12 mg; NCT02692677).Peak plasma concentrations of total radioactivity were achieved rapidly (Tmax: animals, 1 hour; humans, 2-3 hours). Recovery of drug-derived radioactivity was significantly slower in humans (87%, 384 hours) versus animals (rats: 91%-98%, 48 hours; dogs: 81%, 72 hours). Faeces was the primary route of elimination in intact rats (95%), dogs (76%), and humans (69%); and bile in BC rats (48%). Renal elimination of radioactivity was relatively low in animals (2-12%) versus humans (19%).Unchanged erdafitinib was major component in human excreta (faeces, 17%; urine, 11%) relative to animals. M6 (O-desmethyl) was the major faecal metabolite in humans (24%) and rats (intact, 46%; BC, 11%), and M2 (O-glucuronide of M6) was the prevalent biliary metabolite in rats (14%). In dogs, besides M6, majority of radioactive dose in faeces was composed of multiple minor metabolites.In humans, unchanged erdafitinib was the major circulating entity. O-demethylation of erdafitinib was the major metabolic pathway in humans and animals. PMID: 32902324 [PubMed - as supplied by publisher]
Source: Xenobiotica - Category: Research Authors: Tags: Xenobiotica Source Type: research
More News: Bile | Research