Knockdown of PAK1 Inhibits the Proliferation and Invasion of Non–Small Cell Lung Cancer Cells Through the ERK Pathway

The p21-activated kinase (PAK) family of serine/threonine kinases plays a pivotal role in various human tumors, as supported by our previous report on the overexpressed PAK isoforms in non–small cell lung cancer (NSCLC). To better understand the role of PAKs in tumorigenesis, the authors examined PAK1 expression patterns and its significance in NSCLC. It was demonstrated by immunohistochemical staining that PAK1 was increased and localized in the cytoplasm in 151 of 207 cases. High levels of PAK1 expression correlated with a histologic type of tumor (squamous cell carcinoma), tumor node metastasis stage, and lymph nodal status. We also examined the biological role of PAK1 in lung cancer cell lines transfected with PAK1-small interfering RNA. Decreased expression of PAK1 inhibited lung cancer cell proliferation and invasion, which is the major cause of lung cancer malignancy. Downregulated expression of PAK1 hampered rapidly accelerated fibrosarcoma/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway activity but did not affect Wnt/β-catenin signaling. Our findings suggest that PAK1 is an important oncogene in NSCLC, as decreased expression of PAK1 inhibited the proliferation and invasion of NSCLC cells by blocking the ERK pathway. These results provide evidence for using PAK1 inhibition as potential anticancer therapy.
Source: Applied Immunohistochemistry and Molecular Morphology - Category: Chemistry Tags: Research Articles Source Type: research