Integrated transcriptome and phosphoproteome analyses reveal that fads2 is critical for maintaining body LC-PUFA homeostasis.

Integrated transcriptome and phosphoproteome analyses reveal that fads2 is critical for maintaining body LC-PUFA homeostasis. J Proteomics. 2020 Sep 03;:103967 Authors: Zhao Y, Yang G, Wu N, Cao X, Gao J Abstract Fatty acid desaturate 2 (Fads2) is associated with many chronic diseases. Nevertheless, comprehensive researches on its role have not been performed. We here conducted an integrated analysis of long-chain polyunsaturated fatty acid (LC-PUFA) metabolism of fads2-deletion zebrafish (fads2-/-) by transcriptomics, proteomics and phosphoproteomics. Compared with wild type zebrafish (WT), fads2-/- showed significantly higher contents of hepatic linoleic acid (all-cis-9,12-C18:2), α-linolenic acid (all-cis-9,12,15-C18:3) and docosapetaenoic acid (all-cis-7,10,13,16,19-C22:5), and lower contents of γ-linolenic acid (all-cis-6,9,12-C18:3), stearidonic acid (all-cis-6,9,12,15-C18:4) and docosahexaenoic acid (all-cis-4,7,10,13,16,19-C22:6), accompanied by an increased n-6/n-3 PUFA level. In total, we identified 1608 differentially expressed genes (DEGs), 209 differentially expressed proteins (DEPs) and 153 differentially expressed phosphorylated proteins (DEPPs) with 190 sites between fads2-/- and WT. Transcriptome and proteome analysis simultaneously aggregated these DEGs and DEPs into LC-PUFA synthesis and PPAR signaling pathways. Further interaction network analysis of the DEPPs showed that spliceosome and protein processing in en...
Source: Journal of Proteomics - Category: Biochemistry Authors: Tags: J Proteomics Source Type: research