The role of endoplasmic reticulum stress in renal damage caused by acute mercury chloride poisoning.

In this study, we examined the kidney injury and the corresponding ER stress in the mouse model of different doses of acute HgCl2 poisoning. To further confirm the role of ER stress, we tested the effects of its chemical chaperone [4-phenylbutyric acid (4-PBA)]. The results revealed that acute HgCl2 poisoning caused more severe kidney injury with dose on and activated ER stress, as indicated by increased expression of GRP78 and CHOP. Inhibition of ER stress restored the functional and morphological changes of kidneys, and partly attenuated renal tubular epithelial cell apoptosis. In summary, ER stress contributes to the acute kidney injury following HgCl2 poisoning, and inhibition of ER stress may alleviate the kidney injury via reducing apoptosis. PMID: 32879258 [PubMed - in process]
Source: Journal of Toxicological Sciences - Category: Toxicology Tags: J Toxicol Sci Source Type: research