Disruption of neocortical synchronisation during slow-wave sleep in the rotenone model of Parkinson's disease.

Disruption of neocortical synchronisation during slow-wave sleep in the rotenone model of Parkinson's disease. J Sleep Res. 2020 Aug 31;:e13170 Authors: Dos Santos Lima GZ, Targa ADS, de Freitas Cavalcante S, Rodrigues LS, Fontenele-Araújo J, Torterolo P, Andersen ML, Lima MMS Abstract Parkinson's disease motor dysfunctions are associated with improperly organised neural oscillatory activity. The presence of such disruption at the early stages of the disease in which altered sleep is one of the main features could be a relevant predictive feature. Based on this, we aimed to investigate the neocortical synchronisation dynamics during slow-wave sleep (SWS) in the rotenone model of Parkinson's disease. After rotenone administration within the substantia nigra pars compacta, one group of male Wistar rats underwent sleep-wake recording. Considering the association between SWS oscillatory activity and memory consolidation, another group of rats underwent a memory test. The fine temporal structure of synchronisation dynamics was evaluated by a recently developed technique called first return map. We observed that rotenone administration decreased the time spent in SWS and altered the power spectrum within different frequency bands, whilst it increased the transition rate from a synchronised to desynchronised state. This neurotoxin also increased the probability of longer and decreased the probability of shorter desynchronisation events. At...
Source: Journal of Sleep Research - Category: Sleep Medicine Authors: Tags: J Sleep Res Source Type: research