18 β-Glycyrrhetinic Acid Improves Cardiac Diastolic Function by Attenuating Intracellular Calcium Overload

This study aimed to determine whether 18β-GA can improve the diastolic function and to explore the underlying mechanisms. Eighty male Sprague Dawle y (SD) rats of Langendorff model were randomly divided into the following groups: group A, normal cardiac perfusion group; group B, ischemia-reperfusion group; group C, ischemia-reperfusion with anemoniasulcata toxin II (ATX-II); group D, ranolazine group; and group E, 18β-GA group with four differ ent concentrations. Furthermore, a pressure-overloaded rat model induced by trans-aortic constriction (TAC) was established. Echocardiography and hemodynamics were used to evaluate diastolic function at 14th day after TAC. Changes of free intracellular calcium (Ca2+) concentration was indirectly detected by laser scanning confocal microscope to confirm the inhibition of late sodium currents. With the intervention of ATX-II on ischemia reperfusion injury group, 5 µmol/L ranolazine, and 5, 10, 20, 40 µmol/L 18β-GA could improve ATX-II-induced cardiac diastolic dysfunction. 630 mg/kg glycyrrhizin tablets could improve cardiac diastolic function in the pressure-overloaded rats. 18β-GA and ranolazine had similar effects on reducing the free calcium in cardio myocytes. The study demonstrates that 18β-GA and glycyrrhizin could improve diastolic dysfunction induced by ischemia-reperfusion injury in Langendorff-perfused rat hearts and pressure-overloaded rats. The mechanism may be attributed to the inhibition of enhanced late sodium curre...
Source: Journal of Huazhong University of Science and Technology -- Medical Sciences -- - Category: Research Source Type: research