Enriched environment improves sevoflurane-induced cognitive impairment during late-pregnancy via hippocampal histone acetylation.

Enriched environment improves sevoflurane-induced cognitive impairment during late-pregnancy via hippocampal histone acetylation. Braz J Med Biol Res. 2020;53(10):e9861 Authors: Yu Z, Wang J, Zhang P, Wang J, Cui J, Wang H Abstract Fetal exposure to sevoflurane induces long-term cognitive impairment. Histone acetylation regulates the transcription of genes involved in memory formation. We investigated whether sevoflurane exposure during late-pregnancy induces neurocognitive impairment in offspring, and if this is related to histone acetylation dysfunction. We determined whether the effects could be reversed by an enriched environment (EE). Pregnant rats were exposed to 2.5% sevoflurane or control for 1, 3, or 6 h on gestational day 18 (G18). Sevoflurane reduced brain-derived neurotrophic factor (BDNF), acetyl histone H3 (Ac-H3), and Ac-H4 levels and increased histone deacetylases-2 (HDAC2) and HDAC3 levels in the hippocampus of the offspring on postnatal day 1 (P1) and P35. Long-term potentiation was inhibited, and spatial learning and memory were impaired in the 6-h sevoflurane group at P35. EE alleviated sevoflurane-induced cognitive dysfunction and increased hippocampal BDNF, Ac-H3, and Ac-H4. Exposure to 2.5% sevoflurane for 3 h during late-pregnancy decreased hippocampal BDNF, Ac-H3, and Ac-H4 in the offspring but had no effect on cognitive function. However, when the exposure time was 6 h, impaired spatial learning and memory w...
Source: Braz J Med Biol Res - Category: Research Authors: Tags: Braz J Med Biol Res Source Type: research