Insulin-Like Growth Factor I Prevents Cellular Aging via Activation of Mitophagy.

Insulin-Like Growth Factor I Prevents Cellular Aging via Activation of Mitophagy. J Aging Res. 2020;2020:4939310 Authors: Hou X, Li Z, Higashi Y, Delafontaine P, Sukhanov S Abstract Mitochondrial dysfunction is a hallmark of cellular aging. Mitophagy is a critical mitochondrial quality control mechanism that removes dysfunctional mitochondria and contributes to cell survival. Insulin-like growth factor 1 (IGF-1) promotes survival of smooth muscle cells (SMCs), but its potential effect on cellular aging is unknown yet. We found that IGF-1 decreased cell senescence, prevented DNA telomere shortening, increased mitochondrial membrane potential, activated cytochrome C oxidase, and reduced mitochondrial DNA damage in long-term cultured (aged) aortic SMC, suggesting an antiaging effect. IGF-1 increased mitophagy in aged cells, and this was associated with decreased expression of cyclin-dependent kinase inhibitors p16 and p21 and elevated levels of Nrf2 and Sirt3, regulators of mitophagy and mitochondrial biogenesis. SiRNA-induced inhibition of either Nrf2 or Sirt3 blocked IGF-1-induced upregulation of mitophagy, suggesting that the Nrf2/Sirt3 pathway was required for IGF-1's effect on mitophagy. PINK1 is a master regulator of mitophagy. PINK1 silencing suppressed mitophagy and inhibited IGF-1-induced antiaging effects in aged SMC, consistent with an essential role of mitophagy in IGF-1's effect on cellular aging. Thus, IGF-1 inhibited cell...
Source: Journal of Aging Research - Category: Geriatrics Tags: J Aging Res Source Type: research