Reviewing the Mechanisms of Longevity in Long-Lived Bats

Today's open access research is a good companion piece to a recent paper that investigates biochemical differences between long-lived and short-lived bats. Bats are renowned for, firstly, an exceptional resistance to classes of virus that are fatal to other mammals, allowing bat populations to act as reservoirs for potentially dangerous pathogens, and secondly for an exceptional longevity in comparison to other mammalian species of a similar size. In mammals, species longevity tends to scale up with size, with a few notable and well-studied long-lived exceptions such as naked mole-rats, humans, and some bats. In terms of asking why longevity occurs in these species, for naked mole-rats (and near relative species) it may be a side-effect of tolerating oxygen-poor underground environments, providing greater resistance to mechanisms of cell damage that also occur with age. For we humans, the grandmother hypothesis suggests that our culture and intelligence allows older individuals to contribute to the fitness of descendants in ways that other primates do not, and thus there is selection pressure for a longer, slower decline after menopause. As for bats (and birds, which are also, as a rule, long-lived for their size) the high metabolic demands of flight are thought to provide the side-effect of greater longevity for similar reasons to the longevity of naked mole rats, a resistance to cellular damage that occurs with both exertion and aging. Finding out whether or n...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs