TREM-1-targeting LP17 attenuates cerebral ischemia-induced neuronal injury by inhibiting oxidative stress and pyroptosis.

This study also demonstrated that TREM-1 expression was upregulated following cerebral infarction in rats. TREM-1 inhibition was determined using its selective inhibitor, LP17, which indicated a neuroprotective effect on cerebral infarction damage. The findings revealed that inhibition of TREM-1 by administering LP17 improved cerebral damage and decreased ischemic areas and brain water contents. Moreover, LP17 decreased MCAO-induced microglial activation and neurodegeneration, evidenced by a reduction in the expression of microglial Iba-1 and FJ-B positive cells, and reversed neuronal loss. Besides, the contribution of LP17 to ischemic neuronal damage may be associated with a decrease in the production of pro-inflammatory cytokines, and enhanced production of anti-inflammatory cytokine IL-10. Both in vivo and in vitro studies showed that inhibiting TREM-1 attenuated ROS accumulation, lipid per-oxidation (LPO) contents such as malondialdehyde (MDA) and enhanced the superoxide dismutase (SOD) activity after ischemia. Inhibiting TREM-1 alleviated inflammation and pyroptosis found in MCAO rats. This was achieved through the inhibition of the levels of NLRP3, caspase-1, ASC (an apoptosis-associated speck-like protein containing a CARD) and gasdermin D. These results confirmed that inhibiting TREM-1 protects against ischemia-induced neuronal damage and alleviates microglial mediated neuro-inflammation by reducing oxidative stress and pyroptosis. Therefore, blocking TREM-1 express...
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Tags: Biochem Biophys Res Commun Source Type: research