Age-dependent altered redox homeostasis in the chronodisrupted rat model and moderation by melatonin administration.

This study was conducted on young (3 months) and old (24 months) male Wistar rats subdivided into four groups control (C), melatonin treated (MLT), artificial light at night (ALAN), and ALAN+MLT group. Pronounced changes were observed in the old compared to the young rats. Reactive oxygen species (ROS), malondialdehyde (MDA), plasma membrane redox system (PMRS), protein carbonyl (PCO), and sialic acid (SA) were significantly (p ≤ 0.05) increased, while ferric reducing ability of plasma (FRAP) and reduced glutathione (GSH) were significantly (p ≤ 0.05) suppressed in light-exposed young and old animals compared to their age-matched controls. Advanced oxidation protein products (AOPP) increased non-significantly in young rats of the ALAN group; however, significant (p ≤ 0.05) changes were observed in the old rats of the ALAN group compared to their respective controls. Advanced glycation end products (AGEs) increased and acetylcholinesterase (AChE) activity decreased, significantly (p ≤ 0.05) in young animals of the ALAN group, while nonsignificant changes of both parameters were recorded in the old animals of the ALAN groups compared with their age-matched controls. Melatonin supplementation resulted in maintenance of the normal redox homeostasis in both young and old animal groups. Our study suggests that aged rats are more susceptible to altered photoperiod as their circadian redox homeostasis is under stress subsequent to ALAN. Melatonin supplementation cou...
Source: Chronobiology International - Category: Biology Authors: Tags: Chronobiol Int Source Type: research