Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses.

In this study, in-depth passive surveillance comprising nearly 2,500 European swine holdings and more than 18,000 individual samples identified a year-round presence of up to four major swIAV lineages on more than 50% of farms surveilled. Phylogenetic analyses show that intensive reassortment with human pandemic A(H1N1)/2009 (H1pdm) virus produced an expanding and novel repertoire of at least 31 distinct swIAV genotypes and 12 distinct hemagglutinin/neuraminidase combinations with largely unknown consequences for virulence and host tropism. Several viral isolates were resistant to the human antiviral MxA protein, a prerequisite for zoonotic transmission and stable introduction into human populations. A pronounced antigenic variation was noted in swIAV, and several H1pdm lineages antigenically distinct from current seasonal human H1pdm co-circulate in swine. Thus, European swine populations represent reservoirs for emerging IAV strains with zoonotic and, possibly, pre-pandemic potential. PMID: 32721380 [PubMed - as supplied by publisher]
Source: Cell Host and Microbe - Category: Microbiology Authors: Tags: Cell Host Microbe Source Type: research

Related Links:

It wasn’t greed, or curiosity, that made Li Rusheng grab his shotgun and enter Shitou Cave. It was about survival. During Mao-era collectivization of the early 1970s, food was so scarce in the emerald valleys of southwestern China’s Yunnan province that farmers like Li could expect to eat meat only once a year–if they were lucky. So, craving protein, Li and his friends would sneak into the cave to hunt the creatures they could hear squeaking and fluttering inside: bats. Li would creep into the gloom and fire blindly at the vaulted ceiling, picking up any quarry that fell to the ground, while his companion...
Source: TIME: Health - Category: Consumer Health News Authors: Tags: Uncategorized COVID-19 feature Magazine Source Type: news
Once a dangerous new pathogen is out, as we are seeing, it can be difficult if not impossible to prevent it going global. One as contagious as SARS-CoV-2 has the potential to infect the whole of humanity. Eighty per cent of cases may be benign, but with such a large pool of susceptible hosts, the numbers who experience severe illness and die can still be shockingly high. So the only sensible answer to the question, how do we stop this from happening again, is: by doing all we can to prevent such pathogens infecting humans in the first place. And that means taking a long, hard look at our relationship with the natural world...
Source: TIME: Health - Category: Consumer Health News Authors: Tags: Uncategorized COVID-19 Source Type: news
Publication date: Available online 31 December 2019Source: Veterinary MicrobiologyAuthor(s): Dieudonné Tialla, Aurélie Sausy, Assana Cissé, Tani Sagna, Abdoul Kader Ilboudo, Georges Anicet Ouédraogo, Judith M. Hübschen, Zékiba Tarnagda, Chantal J. SnoeckAbstractDespite improvement of human and avian influenza surveillance, swine influenza surveillance in sub-Saharan Africa is scarce and pandemic preparedness is still deemed inadequate, including in Burkina Faso. This cross-sectional study therefore aimed to investigate the (past) exposure of pigs to influenza A viruses. Practices of ...
Source: Veterinary Microbiology - Category: Veterinary Research Source Type: research
This study illustrates how recurrent influenza infections increase the co-infection risk and facilitate evolutionary jumps by successive gene exchanges. It recalls the importance of appropriate biosecurity measures inside holdings to limit virus persistence and interspecies transmissi ons, which both contribute to the emergence of new potentially zoonotic viruses.
Source: Veterinary Research - Category: Veterinary Research Source Type: research
Abstract Swine are reservoirs for anthropogenic/zoonotic influenza viruses, and the prevalence and repeated introduction of the 2009 H1N1 pandemic influenza virus (pdm/09) into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. However, studies aiming to identify miRNAs involved in the transfer of novel swine influenza virus infection to human cells are rare. In this investigation, from the view of small RNA, microarrays and high-throughput sequencing were used to detect differentially expressed miRNAs and mRNAs after human lung epithelial cells were infect...
Source: Infection, Genetics and Evolution - Category: Genetics & Stem Cells Authors: Tags: Infect Genet Evol Source Type: research
In conclusion, the reported results highlight the importance of AIV attachment to trachea in many avian species. Finally, the importance of chickens and mallards in AIVs dynamics was illustrated by the abundant AIV attachment observed. Introduction Influenza A viruses (IAVs) are pathogens of global concern in both human and veterinary medicine (Webster et al., 1992; Stöhr, 2002; Olsen et al., 2006; Wiethoelter et al., 2015). Wild birds are well-described hosts of avian influenza viruses (AIVs) and longitudinal surveillance studies have demonstrated a plethora of low pathogenic AIVs (LPAIVs) circulating in wild...
Source: Frontiers in Microbiology - Category: Microbiology Source Type: research
In this study, we used a swine pH1N1 challenge virus to investigate the efficacy of whole inactivated virus vaccines homologous or heterologous to the challenge virus as well as a commercial vaccine. We found that vaccine-mediated protection was most effective when vaccine antigen and challenge virus were homologous and correlated with the specific production of neutralising antibodies and a cellular response to the challenge virus. We conclude that a conventional whole inactivated SwIV vaccine must be antigenically matched to the challenge strain to be an effective control measure. PMID: 30914224 [PubMed - as supplied by publisher]
Source: Vaccine - Category: Allergy & Immunology Authors: Tags: Vaccine Source Type: research
AbstractPurpose of ReviewZoonotic influenza viruses are those that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. They have also been implicated in the causation of deadly pandemics in recent history. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this first part of a two-part review, we describe the structure of zoonotic influenza viruses, the relationship between mutation and pandemic capacity, pathogenesis of i...
Source: Current Infectious Disease Reports - Category: Infectious Diseases Source Type: research
AbstractNovel H1N2 and H3N2 swine influenza A viruses (IAVs) were identified in commercial farms in Chile. These viruses contained H1, H3 and N2 sequences, genetically divergent from IAVs described worldwide, associated with pandemic internal genes. Guinea pigs were used as human surrogate to evaluate the infection dynamics of these reassortant viruses, compared with a pandemic H1N1 virus. All viruses replicated and were shed in the upper respiratory tract without prior adaptation although H1N2 viruses showed the highest shedding titers. This could have public health importance, emphasizing the need to carry out further st...
Source: Veterinary Research - Category: Veterinary Research Source Type: research
Baik Seong Glycosylation of the hemagglutinin (HA) and neuraminidase (NA) of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG) sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation si...
Source: Viruses - Category: Virology Authors: Tags: Article Source Type: research
More News: Flu Pandemic | H1N1 | Influenza | Microbiology | Pandemics | Science | Study | Swine Flu | Zoonoses