Tremor pathophysiology: lessons from neuroimaging

Purpose of review We discuss the latest neuroimaging studies investigating the pathophysiology of Parkinson's tremor, essential tremor, dystonic tremor and Holmes tremor. Recent findings Parkinson's tremor is associated with increased activity in the cerebello-thalamo-cortical circuit, with interindividual differences depending on the clinical dopamine response of the tremor. Although dopamine-resistant Parkinson's tremor arises from a larger contribution of the (dopamine-insensitive) cerebellum, dopamine-responsive tremor may be explained by thalamic dopamine depletion. In essential tremor, deep brain stimulation normalizes cerebellar overactivity, which fits with the cerebellar oscillator hypothesis. On the other hand, disconnection of the dentate nucleus and abnormal white matter microstructural integrity support a decoupling of the cerebellum in essential tremor. In dystonic tremor, there is evidence for involvement of both cerebellum and basal ganglia, although this may depend on the clinical phenotype. Finally, in Holmes tremor, different causal lesions map to a common network consisting of the red nucleus, internal globus pallidus, thalamus, cerebellum and pontomedullary junction. Summary The pathophysiology of all investigated tremors involves the cerebello-thalamo-cortical pathway, and clinical and pathophysiological features overlap among tremor disorders. We draw the outlines of a hypothetical pathophysiological axis, which may be used besides clinical feat...
Source: Current Opinion in Neurology - Category: Neurology Tags: NEUROIMAGING: Edited by Stéphane Lehéricy Source Type: research