Quantitative analysis of astrocyte and axonal density relationships: Glia to neuron ratio in the optic nerve laminar regions.

This study demonstrates that the distribution of astrocytes correlates closely with the density of axonal processes, in accordance with the functional requirement of different regions of the ganglion cell axon. There was a consistency of glia-neuron ratios in the majority of laminar compartments, except for the human and rat prelaminar regions, which demonstrated lower ratios of astrocyte to axonal processes. The distribution of astrocytes may reflect a functional susceptibility to development of disease in the prelaminar region of the optic nerve. Interspecies comparison at the lamina cribrosa showed strikingly consistent glia-neuron ratios. Collectively, our findings suggest there may be a critical ratio of glia to neuron needed to maintain healthy cellular physiology across different laminar compartments of the optic nerve, with particular importance for the health of the lamina cribrosa region. It is possible that, in disease processes, the glia-neuron relationships across the different laminar compartments may be perturbed and this may be relevant for the development of glaucoma. Emerging technologies may further aid our understanding in how the physiology of optic nerve tissue cellular structure may be affected by changes to ONH characteristics and elevated intraocular pressure induced damage. Such findings may also permit the early identification of RGC axonal injury by identifying quantifiable changes in structural tissue architecture when pathophysiological pathways ...
Source: Experimental Eye Research - Category: Opthalmology Authors: Tags: Exp Eye Res Source Type: research