Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods.

Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods. Anal Bioanal Chem. 2020 Jul 23;: Authors: Zhang H, Liu P, Wang H, Ji X, Zhao M, Song Z Abstract In the article, a simple and label-free strategy was proposed for the sensitive detection of lysozyme based on the fluorescence quenching of positively charged gold nanorods ((+)AuNRs) to DNA-templated silver nanoclusters (DNA/AgNCs). To construct the sensor, a DNA template was designed with a C-rich sequence at the 5'-terminal for the synthesis of AgNCs, while a lysozyme binding aptamer (LBA) at the 3'-terminal for the recognition of lysozyme, and such DNA/AgNCs was used as the fluorescence probe. Meantime, the fluorescence signal of such DNA/AgNCs can be quenched based on the electrostatic adsorption of them with (+)AuNRs, due to the surface energy transfer. In the presence of lysozyme, the specific binding happened between the LBA section of DNA/AgNCs and lysozyme, inducing the reduction of the total charge of DNA/AgNCs and weakening the adsorption of them with (+)AuNRs, which directly resulting in the recovery of the fluorescence signal. Besides, the fluorescence signal recovery of DNA/AgNCs has a linear positive proportional relationship with lysozyme concentration in the range of 10 pM-2.0 nM under the optimal conditions. Moreover, a satisfactory recovery (99.6-107.2%) was obtained while detecting lysozyme in human serum samples. Gra...
Source: Analytical and Bioanalytical Chemistry - Category: Chemistry Authors: Tags: Anal Bioanal Chem Source Type: research