Pathophysiological significance of Stim1 mutation in sympathetic response to stress and cardiovascular phenotypes in SHRSP/Izm: In vivo evaluation by creation of a novel gene knock-in rat using CRISPR/Cas9.

Pathophysiological significance of Stim1 mutation in sympathetic response to stress and cardiovascular phenotypes in SHRSP/Izm: In vivo evaluation by creation of a novel gene knock-in rat using CRISPR/Cas9. Clin Exp Hypertens. 2020 Jul 23;:1-8 Authors: Odongoo B, Ohara H, Ngarashi D, Kaneko T, Kunihiro Y, Mashimo T, Nabika T Abstract Genetic approach using rat congenic lines between SHRSP/Izm and WKY/Izm identified stromal interaction molecule 1 (Stim1), an essential component of store-operated Ca2+ entry (SOCE), as a promising candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP. Since SHRSP has a nonsense mutation in Stim1 resulting in the expression of a truncated form of STIM1 that caused reduction of SOCE activity in primary cultured cerebral astrocytes, we created SHRSP/Izm knocked-in with the wild-type Stim1 (KI SHRSP) by the CRISPR/Cas9 method to investigate whether the functional recovery of STIM1 would mitigate sympatho-excitation to stress in vivo in SHRSP. No potential off-target nucleotide substitutions/deletions/insertions were found in KI SHRSP. Western blotting and fluorescent Ca2+ imaging of astrocytes confirmed wild-type STIM1 expression and restored SOCE activity in astrocytes from KI SHRSP, respectively. Blood pressure (BP) measured by the tail-cuff method at 12, 16, and 20 weeks of age did not significantly differ between SHRSP and KI SHRSP, while the heart rate of KI SHRSP at 1...
Source: Clinical and Experimental Hypertension - Category: Cardiology Authors: Tags: Clin Exp Hypertens Source Type: research