Disrupted brain functional network topology in unilateral acute brainstem ischemic stroke

This study aimed to investigate the topological properties of brain functional connectome in unilateral acute brainstem ischemic stroke using graph theory. Fifty-three acute brainstem ischemic stroke patients, consisted of 27 left-sided and 26 right-sided brainstem stroke patients, and 20 age, gender, and education-matched healthy controls (HCs) were recruited to undergo a resting-state functional magnetic resonance imaging (rs-fMRI) scan in this study. Graph theory analyses were then used to examine the group-specific topological properties of the functional connectomes seperately. The unilateral acute brainstem stroke patients and HCs all exhibited “small-world” brain network topology. The functional connectome of the left brainstem stroke patients showed significant differences in all topological properties while the right brainstem stroke patients showed a significant increase in clustering coefficient Cp (p <  0.001) and local efficiency Elocal (p <  0.001), and a significantly decrease in normalized clustering coefficient γ (p <  0.001) and global efficiency Eglobal (p <  0.001), suggesting both a shift toward regular networks. At the nodal level, abnormal nodal centralities were mainly observed in the defaut mode network, subcortical network, frontal and occipital lobe. The findings of disrupted topological properties of functional brain networks may help better understanding the disease characterization and innovation in management for ...
Source: Brain Imaging and Behavior - Category: Neurology Source Type: research