Overexpression of miR-217-5p protects against oxygen –glucose deprivation/reperfusion-induced neuronal injury via inhibition of PTEN

AbstractIschemic stroke is characterized by loss of brain function because of cerebral ischemia. Evidence has been shown that miR-217-5p is significantly downregulated in infarcted brain areas following focal cerebral ischemia. However, the role of miR-217-5p in ischemic stroke is still unclear. To mimic ischemia/reperfusion (I/R) injury conditions in vitro, SH-SY5Y cells were treated with oxygen –glucose deprivation/reperfusion (OGD/R). Our data found that PTEN was the directly target of miR-217-5p in SH-SY5Y cells. The level of miR-217-5p was significantly decreased, while the level of PTEN was notably increased in SH-SY5Y cells following OGD/R treatment. Overexpression of miR-217-5p mar kedly promoted the proliferation and cell cycle progression, and inhibited apoptosis in OGD/R-treated SH-SY5Y cells. In addition, overexpression of miR-217-5p significantly decreased the expressions of PTEN and FOXO1, but increased the expression of p-Akt in OGD/R-treated SH-SY5Y cells. Moreover, me thylation specific PCR (MSP) results indicated the CpG islands in the promoter region of miR-217-5p were hypermethylated in SH-SY5Y cells under OGD/R. Meanwhile, the DNA methylation of miR-217-5p promoter region decreased expression of miR-217-5p. Our data indicated that miR-217-5p could attenuate i schemic injury by inhibiting PTEN. In addition, DNA methylation-mediated silencing of miR-217-5p may serve as a promising therapeutic target of ischemic stroke.
Source: Human Cell - Category: Cytology Source Type: research