Guanosine Neuroprotective Action in Hippocampal Slices Subjected to Oxygen and Glucose Deprivation Restores ATP Levels, Lactate Release and Glutamate Uptake Impairment: Involvement of Nitric Oxide.

This study was designed to investigate the involvement of nitric oxide (NO) in the mechanisms related to the protective role of guanosine in rat hippocampal slices subjected to OGD followed by reoxygenation (OGD/R). Guanosine (100 μM) and the pan-NOS inhibitor, L-NAME (1 mM) afforded protection to hippocampal slices subjected to OGD/R. The presence of NO donors, DETA-NO (800 μM) or SNP (5 μM) increased reactive species production, and abolished the protective effect of guanosine or L-NAME against OGD/R. Guanosine or L-NAME treatment prevented the impaired ATP production, lactate release, and glutamate uptake following OGD/R. The presence of a NO donor also abolished the beneficial effects of guanosine or L-NAME on bioenergetics and glutamate uptake. These results showed, for the first time, that guanosine may regulate cellular bioenergetics in hippocampal slices subjected to OGD/R injury by a mechanism that involves the modulation of NO levels. PMID: 32666283 [PubMed - as supplied by publisher]
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research