Hydrogen Sulfide Reverses LPS-Induced Behavioral Deficits by Suppressing Microglial Activation and Promoting M2 Polarization

AbstractActivation of microglia is a  hallmark of neuroinflammation and has been implicated in the development of many psychiatric disorders. Hydrogen sulfide (H2S); a gasotransmitter has recently emerged as a potent antioxidant and anti-inflammatory molecule. However, the protective potential of H2S  and its underpin molecular mechanisms in neuroinflammation associated behavioral deficits are still unknown. The present study has been designed to investigate the effect of sodium hydrogen sulfide (NaHS; a source of H2S) on microglial activation and associated behavior phenotype in response to lipopolysaccharide (LPS)-induced neuroinflammation. LPS treatment decreased H2S levels with a concomitant increase in reactive oxygen species (ROS) in the cortex and hippocampus. However, NaHS administration restored the endogenous H2S levels to the  normal and decreased ROS levels. NaHS supplementation reduced the number of active microglia in the cortex and hippocampus of LPS treated animals. Morphological analysis of microglia showed significant increase in microglial density, span ratio and soma area in the cortex and hippocampus of LPS tr eated animals which was decreased by NaHS supplementation. Moreover, NaHS administration reduced the expression of microglial M1 phenotype markers (IL-1β, TNF-α and nitrite) and concomitantly increased the expression of M2 phenotype markers (IL-4 and TGF-β) in the brain regions of LPS treated animals. Furthermore, LPS-induced anxiety...
Source: Journal of NeuroImmune Pharmacology - Category: Drugs & Pharmacology Source Type: research