Long non-coding RNA Linc00092 inhibits cardiac fibroblast activation by altering glycolysis in an ERK-dependent manner.

Long non-coding RNA Linc00092 inhibits cardiac fibroblast activation by altering glycolysis in an ERK-dependent manner. Cell Signal. 2020 Jul 09;:109708 Authors: Chen ZT, Zhang HF, Wang M, Wang SH, Wen ZZ, Gao QY, Wu MX, Liu WH, Xie Y, Mai JT, Yang Y, Wang JF, Chen YX Abstract AIMS: Cardiac fibroblast (CF) activation is the key event for cardiac fibrosis. The role of glycolysis and the glycolysis-related lncRNAs in CF activation are unknown. Thus, we aimed to investigate the role of glycolysis in CF activation and to identify the glycolysis-related lncRNAs involved. MAIN METHODS: Glycolysis-related lncRNAs were searched and their expression profiles were validated in activated human CF (HCF) and human failing heart tissues. Expression of the target lncRNA was manipulated to determine its effects on HCF activation and glycolysis. The underlying mechanisms of lncRNA-dependent glycolysis regulation were also addressed. KEY FINDINGS: HCF activation induced by transforming growth factor-β1 was accompanied by an enhanced glycolysis, and 2-Deoxy-d-glucose, a specific glycolysis inhibitor, dramatically attenuated HCF activation. Twenty-eight glycolysis-related lncRNAs were identified and Linc00092 expression was changed mostly upon HCF activation. In human heart tissue, Linc00092 is primarily expressed in cardiac fibroblasts. Linc00092 knockdown activated HCFs with enhanced glycolysis, while its overexpression rescued the ac...
Source: Cellular Signalling - Category: Cytology Authors: Tags: Cell Signal Source Type: research
More News: Cardiology | Cytology | Heart | Science