The voltage-gated potassium channel KV1.3 as a therapeutic target for venom-derived peptides.

The voltage-gated potassium channel KV1.3 as a therapeutic target for venom-derived peptides. Biochem Pharmacol. 2020 Jul 09;:114146 Authors: Tajti G, Wai DCC, Panyi G, Norton RS Abstract The voltage-gated potassium channel KV1.3 is a well-established therapeutic target for a range of autoimmune diseases, in addition to being the site of action of many venom-derived peptides. Numerous studies have documented the efficacy of venom peptides that target KV1.3, in particular from sea anemones and scorpions, in animal models of autoimmune diseases such as rheumatoid arthritis, psoriasis and multiple sclerosis. Moreover, an analogue of the sea anemone peptide ShK (known as dalazatide) has successfully completed Phase 1 clinical trials in mild-to-moderate plaque psoriasis. In this article we consider other potential therapeutic applications of inhibitors of KV1.3, including in inflammatory bowel disease and neuroinflammatory conditions such as Alzheimer's and Parkinson's diseases, as well as fibrotic diseases. We also summarise strategies for facilitating the entry of peptides to the central nervous system, given that this will be a pre-requisite for the treatment of most neuroinflammatory diseases. Venom-derived peptides that have been reported recently to target KV1.3 are also described. The increasing number of autoimmune and other conditions in which KV1.3 is upregulated and is therefore a potential therapeutic target, combined with the...
Source: Biochemical Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Biochem Pharmacol Source Type: research