The effect of electric field, magnetic field, and infrared ray combination to reduce HOMA-IR index and GLUT 4 in diabetic model of Mus musculus

This study used 30 adult male mice strain BALB/c. Diabetes was induced using high-fat diet/streptozotocin method until random blood glucose level reached> 200 mg/dL. Diabetic mice were then exposed to electrical field (static and dynamic), magnetic field (static and induce), and infrared ray (with or without infrared ray) combination therapy 15 min daily for 28 days. Fasting blood glucose level, plasma insulin level, HOMA-IR index, and membrane GLUT-4 density after treatment were analyzed statistically atĪ± = 0.05. Result showed that exposure combination of electrical field, magnetic field, and infrared were found to be able to lower fasting blood glucose level and HOMA-IR index significantly, but plasma insulin level and GLUT-4 density were not found to be significantly different compared to diabetic control. Based on current study result, the best combination for reducing insulin resistance in diabetic mice is BsEsI (combination of static magnetic field (Bs), static electric field (Es), with infrared (I)), indicated by lowest HOMA-IR compared to other groups. Exposure to combination of magnetic field, electrical field, and infrared resulted in lowering fasting blood glucose level and HOMA-IR index in diabetic mice, indicating reduced insulin resistance.
Source: Lasers in Medical Science - Category: Laser Surgery Source Type: research