Molecules, Vol. 25, Pages 3070: Otoprotective Effect of 2,3,4 ′,5-Tetrahydroxystilbene-2-O-β-d-Glucoside on Gentamicin-Induced Apoptosis in Mouse Cochlear UB/OC-2 Cells

Molecules, Vol. 25, Pages 3070: Otoprotective Effect of 2,3,4′,5-Tetrahydroxystilbene-2-O-β-d-Glucoside on Gentamicin-Induced Apoptosis in Mouse Cochlear UB/OC-2 Cells Molecules doi: 10.3390/molecules25133070 Authors: Yu-Hsuan Wen Jia-Ni Lin Rong-Shuan Wu Szu-Hui Yu Chuan-Jen Hsu Guo-Fang Tseng Hung-Pin Wu Excessive levels of reactive oxygen species (ROS) lead to mitochondrial damage and apoptotic cell death in gentamicin-induced ototoxicity. 2,3,4’,5-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG), a bioactive constituent, isolated from Polygonum multiflorum Thunb., exhibits numerous biological benefits in treating aging-related diseases by suppressing oxidative damage. However, its protective effect on gentamicin-induced ototoxicity remains unexplored. Therefore, here, we aimed to investigate the otoprotective effect of THSG on gentamicin-induced apoptosis in mouse cochlear UB/OC-2 cells. We evaluated the effect of gentamicin and THSG on the ROS level, superoxide dismutase (SOD) activity, mitochondrial membrane potential, nuclear condensation, and lactate dehydrogenase (LDH) release, and the expression of apoptosis-related proteins was assessed to understand the molecular mechanisms underlying its preventive effects. The findings demonstrated that gentamicin increased ROS generation, LDH release, and promoted apoptotic cell death in UB/OC-2 cells. However, THSG treatment reversed these effects by suppressing ROS production and...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research