Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS ‐CoV‐2 and Other Respiratory Viruses

A detection technology, nanopore targeted sequencing (NTS), for the accurate and comprehensive detection of SARS ‐CoV‐2 and other respiratory viruses within 6–10 h is developed, which is suitable for the identification of suspected cases and used as a supplementary technique for the SARS‐CoV‐2 test. NTS can also monitor mutations in the virus and the type of virus. AbstractThe ongoing global novel coronavirus pneumonia COVID ‐19 outbreak has engendered numerous cases of infection and death. COVID‐19 diagnosis relies upon nucleic acid detection; however, currently recommended methods exhibit high false‐negative rates and are unable to identify other respiratory virus infections, thereby resulting in patient misdiag nosis and impeding epidemic containment. Combining the advantages of targeted amplification and long‐read, real‐time nanopore sequencing, herein, nanopore targeted sequencing (NTS) is developed to detect SARS‐CoV‐2 and other respiratory viruses simultaneously within 6–10 h, with a limit of detection of ten standard plasmid copies per reaction. Compared with its specificity for five common respiratory viruses, the specificity of NTS for SARS‐CoV‐2 reaches 100%. Parallel testing with approved real‐time reverse transcription‐polymerase chain reaction kits for SARS‐CoV‐2 and NTS using 61 nucleic acid samples from suspected COVID‐19 cases show that NTS identifies more infected patients (22/61) as positive, while also effectively mo...
Source: Small - Category: Nanotechnology Authors: Tags: Full Paper Source Type: research