Attention-Diffusion-Bilinear Neural Network for Brain Network Analysis

Brain network provides essential insights in diagnosing many brain disorders. Integrative analysis of multiple types of connectivity, e.g, functional connectivity (FC) and structural connectivity (SC), can take advantage of their complementary information and therefore may help to identify patients. However, traditional brain network methods usually focus on either FC or SC for describing node interactions and only consider the interaction between paired network nodes. To tackle this problem, in this paper, we propose an Attention-Diffusion-Bilinear Neural Network (ADB-NN) framework for brain network analysis, which is trained in an end-to-end manner. The proposed network seamlessly couples FC and SC to learn wider node interactions and generates a joint representation of FC and SC for diagnosis. Specifically, a brain network (graph) is first defined, where each node corresponding to a brain region is governed by the features of brain activities (i.e., FC) extracted from functional magnetic resonance imaging (fMRI), and the presence of edges is determined by neural fiber physical connections (i.e., SC) extracted from Diffusion Tensor Imaging (DTI). Based on this graph, we train two Attention-Diffusion-Bilinear (ADB) modules jointly. In each module, an attention model is utilized to automatically learn the strength of node interactions. This information further guides a diffusion process that generates new node representations by considering the influence from other nodes as w...
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research