Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images

Digital histology images are amenable to the application of convolutional neural networks (CNNs) for analysis due to the sheer size of pixel data present in them. CNNs are generally used for representation learning from small image patches (e.g. $224times 224$ ) extracted from digital histology images due to computational and memory constraints. However, this approach does not incorporate high-resolution contextual information in histology images. We propose a novel way to incorporate a larger context by a context-aware neural network based on images with a dimension of $1792times 1792$ pixels. The proposed framework first encodes the local representation of a histology image into high dimensional features then aggregates the features by considering their spatial organization to make a final prediction. We evaluated the proposed method on two colorectal cancer datasets for the task of cancer grading. Our method outperformed the traditional patch-based approaches, problem-specific methods, and existing context-based methods. We also presented a comprehensive analysis of different variants of the proposed method.
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research