Programmed antibacterial and mineralization therapy for dental caries based on zinc-substituted hydroxyapatite/ alendronate-grafted polyacrylic acid hybrid material.

Programmed antibacterial and mineralization therapy for dental caries based on zinc-substituted hydroxyapatite/ alendronate-grafted polyacrylic acid hybrid material. Colloids Surf B Biointerfaces. 2020 Jun 17;194:111206 Authors: Xu X, Wang N, Wu M, Wang J, Wang D, Chen Z, Xie J, Ding C, Li J Abstract The domination of cariogenic bacteria in dental plaque biofilms is the primary cause of dental caries. In view of this, for the purpose of an effective treatment of dental caries, it is of great importance to inhibit the activity of acidogenic bacteria and promote the remineralization of damaged teeth simultaneously. However, the expensive antibacterial agents and poor mineralization ability of materials limit the practical applications. Biomineralization regulated by non-collagenous proteins (NCPs) gives hints to combine the remineralization ability of NCPs with accessible antibacterial property effectively. In this work, we propose a programmed antibacterial and remineralization strategy for the therapy of dental caries based on zinc-substituted hydroxyapatite/ alendronate-grafted polyacrylic acid hybrid nanoneedles (ZHA@ALN-PAA). This hybrid material dissolves in the acidic caries environment and regulate the pH to nearly neutral (6.5). Abundant calcium/ phosphate ions are supplemented and the ALN-PAA embedded in it has also been released, which assists the biomineralization on tooth defect. It has been revealed that the inhibition ra...
Source: Colloids and Surfaces - Category: Biotechnology Authors: Tags: Colloids Surf B Biointerfaces Source Type: research