Emission of atmospheric pollutants during forest fire in boreal region of China.

In this study, we quantified emission factor (EF) of gaseous pollutants (CO, CO2, NOx, hydrocarbons, organic carbon, and inorganic elements), fine particulate matter (PM2.5), water soluble inorganic ions, and non-methane hydrocarbons (NMHCs) from leaves, branches and barks of five dominant tree species in Chinese boreal region. Results demonstrate that the emission factors of different pollutants varied among tree species and fuel typology. The average total EF (leaves + branches + barks) of different species ranged from 922 ± 116 mg/g to 1383 ± 134 mg/g for CO2; 225 ± 109 mg/g to 277 ± 21 mg/g for CO; 0.6 ± 0.2 mg/g to 3 ± 0.7 mg/g for NOx; 32 ± 6 mg/g to 55 ± 7 mg/g for hydrocarbons; 3 ± 0.3 mg/g to 6 ± 0.7 mg/g for organic carbon; 0.6 ± 0.1 mg/g to 2 ± 0.1 mg/g for elemental carbon; and 4 ± 0.7 mg/g to 12 ± 1 mg/g for PM2.5. The total water soluble ions ranged from 5 ± 0.6 mg/kg to 12 ± 1.3 mg/g. For most of the pollutants, combustion of barks emitted more than that of leaves and branches. A total of 48 types of NMHCs (19 alkanes, 15 alkenes, and 14 aromatic compounds) were released during combustion of leaves, barks, and branches of tree species, with EF ranged from 982 mg/g to 1375 mg/g. Alkenes and i-butane, 1-butene, 1,3-butadiene, Isoprene, 4-Methyl-1-pentene, p-Xylene and benzene were the major ozone-forming compounds. Our results provide a comprehensive emission data by species and fuel typology t...
Source: Environmental Pollution - Category: Environmental Health Authors: Tags: Environ Pollut Source Type: research