Modulation of Redox and insulin signaling underlie the anti-hyperglycemic and antioxidant effects of diphenyl diselenide in zebrafish.

Modulation of Redox and insulin signaling underlie the anti-hyperglycemic and antioxidant effects of diphenyl diselenide in zebrafish. Free Radic Biol Med. 2020 Jun 13;: Authors: Dos Santos MM, de Macedo GT, Prestes AS, Ecker A, Müller TE, Leitemperger J, Fontana BD, Ardisson-Araújo DMP, Rosemberg DB, Barbosa NV Abstract The organic selenium compound diphenyl diselenide (DD) has been recognized as an antioxidant and neuroprotective agent, exerting an anti-hyperglycemic effect in experimental models of diabetes. However, the precise mechanisms involved in the protection are unclear. Using the zebrafish (Danio rerio) as a model organism, here we investigated biomarkers underlying the protective effects of DD against hyperglycemia, targeting in a transcriptional approach the redox and insulin-signaling pathway. Fish were fed on a diet containing DD (3 mg/kg) for 74 days. In the last 14 days, they were exposed to a 111 mM glucose solution to induce a hyperglycemic state. DD reduced blood glucose levels as well as normalized the brain mRNA transcription of four insulin receptors-coding genes (Insra1, Insra2, Insrb1, Insrb2), which were down-regulated by glucose. DD alone caused an up-regulation of relative mRNA transcription in both Insra receptors and glucose transporter 3 genes. DD counteracted hyperglycemia-induced lipid peroxidation, protein and thiol depletion. Along with the decreased activity of antioxidant enzymes SOD and GPx, t...
Source: Free Radical Biology and Medicine - Category: Biology Authors: Tags: Free Radic Biol Med Source Type: research