Inhibition of NK1R attenuates LPS-induced microglial inflammation and consequent death of PC12 cells.

Inhibition of NK1R attenuates LPS-induced microglial inflammation and consequent death of PC12 cells. Brain Res Bull. 2020 Jun 12;: Authors: Jiang W, Wang X, Wang W, Hua F, Zhang Z, Zhang Z, Xiang J, Yang X Abstract Microglia, the resident immune cells in the central nervous system, play a critical role under physiological conditions, but they may be activated and exaggerate the pathological development of Parkinson's disease (PD). Recent reports have suggested that neurokinin 1 receptor (NK1R) is involved in various inflammatory diseases, including PD. However, whether neurokinin 1 (NK1) is involved in the activation of microglial cells remains unclear. In the present study, we found that (1) NK1R is located in microglial cells and upregulated in lipopolysaccharide (LPS)-activated BV2 microglia. Application of CP-99994, a selective antagonist of NK1R, inhibited the production of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), IL-6, inducible macrophage-type nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in activated BV2 cells. (2) NK1R antagonist suppressed the morphological changes in LPS-stimulated BV2. (3) Microglial inactivation by NK1R antagonist resulted in decreased microglial migration. (4) NK1R antagonist reduced nuclear translocation of nuclear factor kappa-B (NF-κB) and attenuated phosphorylation of mitogen-activated protein kinases (MAPKs) in LPS-stimulated B...
Source: Brain Research Bulletin - Category: Neurology Authors: Tags: Brain Res Bull Source Type: research