Dietary nitrate attenuated endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: A critical role for NADPH oxidase.

Dietary nitrate attenuated endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: A critical role for NADPH oxidase. Arch Biochem Biophys. 2020 Jun 07;:108453 Authors: Peng R, Luo M, Tian R, Lu N Abstract Nitric oxide (NO) deficiency and NADPH oxidase plays key roles in endothelial dysfunction and atherosclerotic plaque formation. Recent evidence demonstrates that nitrate-nitrite-NO pathway in vivo exerts beneficial effects upon the cardiovascular system. We aimed to investigate the effects of dietary nitrate on endothelial function and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice fed a high-fat diet. It was shown that dietary nitrate significantly attenuated aortic endothelial dysfunction and atherosclerosis in ApoE-/- mice. Mechanistic studies revealed that dietary nitrate significantly improved plasma nitrate/nitrite, inhibited vascular NADPH oxidase activity and oxidative stress in ApoE-/- mice, while xanthine oxidoreductase (XOR) expression and activity was enhanced in ApoE-/- mice in comparison with wide type animals. These beneficial effects of nitrate in ApoE-/- mice were abolished by PTIO (NO scavenger) and significantly prevented by febuxostat (XOR inhibitor). In the presence of nitrate, no further effect of apocynin (NADPH oxidase inhibitor) was observed, suggesting NADPH oxidase as a possible target. In vitro, NO donor significantly inhibited NADPH oxidase activit...
Source: Archives of Biochemistry and Biophysics - Category: Biochemistry Authors: Tags: Arch Biochem Biophys Source Type: research