Late-life voluntary wheel running reverses age-related aortic stiffness in mice: a translational model for studying mechanisms of exercise-mediated arterial de-stiffening

In this study, we investigated whether VWR in mice may be a suitable model for mechanistic studies (i.e., “reverse translation”) of the beneficial effects of exercise on arterial stiffness in humans. We found that 10 weeks of VWR in old mice (~ 28 months) reversed age-related elevations in aortic PWV assessed in vivo (Old VWR: 369 ± 19 vs. old sedentary: 439 ± 20 cm/s,P <  0.05). The de-stiffening effects of VWR were accompanied by normalization of age-related increases in ex vivo mechanical stiffness of aortic segments and aortic accumulation of collagen-I and advanced glycation end products, as well as lower levels of aortic superoxide and nitrotyrosine. Our resu lts suggest that late-life VWR in mice recapitulates the aortic de-stiffening effects of exercise in humans and indicates important mechanistic roles for decreased oxidative stress and extracellular matrix remodeling. Therefore, VWR is a suitable model for further study of the mechanisms underlying beneficial effects of exercise on arterial stiffness.
Source: AGE - Category: Geriatrics Source Type: research