Dosimetric evaluation of phantoms including metal objects with high atomic number for use in intensity modulated radiation therapy.

In this study, a phantom, containing a metal with high atomic number, was prepared for intensity-modulated radiotherapy (IMRT) treatment plans to be used in quality assurance (QA) procedures. Two sets of image files, one without metal artefact correction (ORG) and another with MAR correction (MAR+), were sent to the treatment planning system. In this study, 12 IMRT treatment plans with different fields and segment numbers were calculated. The normal tissue complication probability (NTCP) values of imaginary organs at risk (OARs), such as the rectum and bladder, were investigated, as was the difference in dose maps for ORG and MAR+ derived by calculating gamma passing rates (GPRs). The MatriXX was used for the gamma evaluation of patient-specific IMRT QA measurements. The gamma evaluation was repeated, based on the measurements using an EBT3 gafchromic film, for the plan showing the lowest GPR. The mean relative difference in NTCP values between the two sets of image files was found to be 2.5, 2.1 and 1.4 for the rectum; and 5.33, 6.80 and 9.82 for the bladder, for the investigated 5-, 7- and 9-field beam arrangements, respectively. The relative differences and the standard deviations in GPRs for the standard and metal-containing phantoms were calculated for the MAR+ and ORG sets. The maximum difference found was 7.69% ± 0.88 for the 9-field beam arrangement calculated without metal artefact correction. In the IMRT QA procedures for prostate patients with hip prostheses, ...
Source: Radiation and Environmental Biophysics - Category: Physics Authors: Tags: Radiat Environ Biophys Source Type: research