Understanding take-over performance of high crash risk drivers during conditionally automated driving.

This study aimed to examine the difference in take-over performance between high crash risk (HCR) and lower crash risk (LCR) drivers in emergency take-over situations during conditionally automated driving. In the current simulator study, a 3 × 3 (within-subjects) factorial design was used, including the task factors (no task, reading the news, and watching a video) and time budget factors (time budget = 3 s, 4 s, and 5 s). Forty-eight participants completed a test drive on an approximately 10 km long two-way six-lane urban road. The participants firstly were in manual control and then switched to the automated driving mode at a speed of 50 km/h. The automated driving system was able to detect a broken car in the ego-lane and requested the driver to take over the control of the vehicle. There are at least one or two other vehicles or motorcycles on each side of the ego-vehicle, resulting in fewer escape paths. For the two non-handheld non-driving-related tasks (NDRTs), the participants were asked to be fully engaged in a task without any need to monitor the road environments. Each participant completed nine emergency take-over situations. The participants were classified into two groups that were labeled LCR (N ≤ 2) and HCR drivers (N ≥ 3) according to the number of accidents per driver. The results show that LCR drivers had shorter brake reaction time compared to HCR drivers. For all drivers, the engagement in a task led to longer response time...
Source: Accident; Analysis and Prevention. - Category: Accident Prevention Authors: Tags: Accid Anal Prev Source Type: research