Apolipoprotein A-I anti-tumor activity targets cancer cell metabolism.

Apolipoprotein A-I anti-tumor activity targets cancer cell metabolism. Oncotarget. 2020 May 12;11(19):1777-1796 Authors: Zamanian-Daryoush M, Lindner DJ, Buffa J, Gopalan B, Na J, Hazen SL, DiDonato JA Abstract Previously, we reported apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), has potent anti-melanoma activity. We used DNA microarray and bioinformatics to interrogate gene expression profiles of tumors from apoA-I expressing (A-I Tg+/-) versus apoA-I-null (A-I KO) animals to gain insights into mechanisms of apoA-I tumor protection. Differential expression analyses of 11 distinct tumors per group with > 1.2-fold cut-off and a false discovery rate adjusted p < 0.05, identified 176 significant transcripts (71 upregulated and 105 downregulated in A-I Tg+/- versus A-I KO group). Bioinformatic analyses identified the mevalonate and de novo serine/glycine synthesis pathways as potential targets for apoA-I anti-tumor activity. Relative to A-I KO, day 7 B16F10L melanoma tumor homografts from A-I Tg+/- exhibited reduced expression of mevalonate-5-pyrophosphate decarboxylase (Mvd), a key enzyme targeted in cancer therapy, along with a number of key genes in the sterol synthesis arm of the mevalonate pathway. Phosphoglycerate dehydrogenase (Phgdh), the first enzyme branching off glycolysis into the de novo serine synthesis pathway, was the most repressed transcript in tumors from A-I Tg+/-. W...
Source: Oncotarget - Category: Cancer & Oncology Tags: Oncotarget Source Type: research