Enhanced healing of rat calvarial defects with 3D printed calcium-deficient hydroxyapatite/collagen/bone morphogenetic protein 2 scaffolds.

Enhanced healing of rat calvarial defects with 3D printed calcium-deficient hydroxyapatite/collagen/bone morphogenetic protein 2 scaffolds. J Mech Behav Biomed Mater. 2020 Aug;108:103782 Authors: Han SH, Lee J, Lee KM, Jin YZ, Yun HS, Kim G, Lee JH Abstract In this paper, we mainly to evaluate the newly formed bone using the Calcium deficient hydroxyapatite (CDHA)/collagen-based bio-ceramic scaffold as Bone Morphogenetic Protein-2 (BMP-2) carrier in rat calvarial critical-sized bone defect. In the real-time PCR analysis, the CDHA/collagen scaffold loaded rhBMP-2 group showed significantly enhanced results of bone-related gene expression (p < 0.05). In the in vivo study, the micro-CT showed that the main bone formation parameters of percent bone volume and trabecular number of the two experiment groups (CDHA/Collagen (CDHA) group, BV/TV: 14.21 ± 3.20, Tb.N: 2.37 ± 0.50; CDHA/Collagen/rhBMP-2(BMP) group, BV/TV: 14.51 ± 3.12, Tb.N: 2.75 ± 0.65) were significantly higher than those of the control (Blank, BV/TV: 3.25 ± 1.25, Tb.N: 0.57 ± 0.20) group (p < 0.05). Although there was no significant difference between the two experimental groups, the BMP group results were slightly higher than those of the CDHA group (p > 0.05). Moreover, the histological results also supported the micro-CT results. The scaffold of CDHA/collagen seems to be a suitable bio-ceramic carrier loaded rhBMP-2, and appears to enhance n...
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Tags: J Mech Behav Biomed Mater Source Type: research