Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy - The influence of extrusion parameters on microstructure and mechanical characteristics.

In this study, we focused on the influence of extrusion parameters, such as temperature and extrusion ratio, on microstructural and mechanical characteristics of a ZnMg0.8Ca0.2 (wt.%) alloy. The extrusion led to a significant grain refinement and the formation of a crystallographic texture. Extrusion temperature played a more significant role in the mean grain size compared to the extrusion ratio (ER). At lower extrusion temperatures, the texture was less intensive and the subsequent mechanical anisotropy was weaker. Constants for the prediction of the grain size based on the Zener-Hollomon parameter were obtained. Prediction of mechanical properties using the Hall-Petch relationship appeared to be difficult because of the dependence of the texture on the extrusion temperature. Extrusion at the temperatures of 200 °C (ER = 25:1) and 150 °C (ER = 11:1) led to mechanical performance fulfilling the requirements for implantology. PMID: 32469720 [PubMed - as supplied by publisher]
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Tags: J Mech Behav Biomed Mater Source Type: research