miR ‑199a‑3p suppresses cervical epithelial cell inflammation by inhibiting the HMGB1/TLR4/NF‑κB pathway in preterm birth.

miR‑199a‑3p suppresses cervical epithelial cell inflammation by inhibiting the HMGB1/TLR4/NF‑κB pathway in preterm birth. Mol Med Rep. 2020 May 22;: Authors: Peng J, Jiang J, Wang H, Feng X, Dong X Abstract Preterm birth (PTB) is the primary cause of neonatal mortality worldwide. Infection and inflammation are considered to be the primary causes of PTB. Cervical remodeling is an important step in the process of preterm delivery, and the destruction of the cervical epithelial barrier and inflammation are important triggers of cervical remodeling. The aim of the present study was to determine the effect and underlying mechanism of microRNA (miR)‑199a‑3p/high‑mobility group box 1 protein (HMGB1) signaling in cervical epithelial inflammation in PTB. The results of this study revealed that miR‑199a‑3p was significantly decreased in cervical epithelial tissue samples from patients in both the preterm labor and preterm premature rupture of membrane groups. This decrease was also observed in tissue samples from a lipopolysaccharide (LPS)‑induced PTB mouse model and in LPS‑induced ectocervical and endocervical cells. Whereas, the expression of HMGB1 and toll‑like receptor 4 (TLR4) was significantly increased, which was associated with the upregulation of interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α expression. Furthermore, overexpression of miR‑199a‑3p significantly suppressed the expression and activ...
Source: Molecular Medicine Reports - Category: Molecular Biology Tags: Mol Med Rep Source Type: research