Mechanical fatigue fractures bivalve shells [RESEARCH ARTICLE]

R. L. Crane and M. W. Denny Mollusk shells protect against diverse environmental and predatory physical threats, from one-time impacts to chronic, low-magnitude stresses. The effectiveness of shells as armor is often quantified with a test of shell strength: increasing force is applied until catastrophic fracture. This test does not capture the potential role of fatigue, a process by which chronic or repeated, low-magnitude forces weaken and break a structure. We quantified the strength and fatigue resistance of California mussel (Mytilus californianus) shells. Shells were fatigue tested until catastrophic failure by either loading a valve repeatedly to a set force (cyclic) or loading a valve under constant force (static). Valves fatigued under both cyclic and static loading, i.e. subcritical forces broke valves when applied repeatedly or for long durations. Stronger and more fatigue-resistant valves tended to be more massive, relatively wider and the right-hand valve. Furthermore, after accounting for the valves' predicted strength, fatigue resistance curves for cyclic and static loading did not differ, suggesting that fatigue fracture of mussels is more dependent on force duration than number of cycles. Contextualizing fatigue resistance with the forces mussels typically experience clarifies the range of threats for which fatigue becomes relevant. Some predators could rely on fatigue, and episodic events like large wave impacts or failed predation attempts could weaken she...
Source: Journal of Experimental Biology - Category: Biology Authors: Tags: RESEARCH ARTICLE Source Type: research